Difference between 2D & 3D Drawings

Difference between 2D & 3D Drawings


The abbreviation for two-dimensional drawing is 2-D. It describes the view that comes with using height, width and length. Or it can be length and length dimensions. It comes with two-dimensional drawings that are established using design and drafting format. They commonly used for all engineering and architectural industries that relates to the disciplines with ease.

The two 2-D views represent the geometry of an aircraft part. It uses two views that come together and provide height, width, and length dimensions. The views mostly appear in the flat format and are rotated at 90 degrees from each other.


It comes with a complete 2-D drawing that include notes, dimensions, and text that describes view details and features. 2D drawings are the conventional and need to use method for communicating a project. Along with this, it uses an effective 2-D drawing accurately with describing design intent and product requirements. It covers the shape, size, and characteristics of all materials, features, finishes, and manufacturing methods.


A 2D drawing comes with typical documents that add project data for individuals and companies that are involved in the project. It covers relevant dates, design and approvals based on revision history. The 2D drawings offer computer numerical control (CNC) machine code. When compared with 3D surface and solid models, 2D drawings use few options to present and visualise the ideas. and limited ability to analyze and test product design. In addition, 2D drawings sometimes can be difficult to understand, if the reader is unfamiliar with interpreting 2D drawings.


The abbreviation for three-dimensional is 3-D. It describes an object that have a height, a width, and depth dimensions. A wire-frame model offers the most basic  3-D CAD model , and contains data about object vertices and edges. The word vertices are plural when used for vertex. It points the edges that intersect. The wireframe is a term that describe the appearance of the model if they are constructed using wires.


Talking about three-dimensional surface, then it’s used as solid modelling placed in wireframe modelling in the CAD industry. The wireframe models come with a limited models use because they lack mass and surfaces. Without using the surfaces, the wireframe models are most difficult to visualise. It comes with creating an uncertain design intent. It does not require a true representation of a product, and lack volume.

Few tools come with an ability to change or hide the format of the lines fall through object features. It improves visualisation and create a 3-D representation way, along with a view for a 2-D drawing. However, the display can cause confusion. Especially when user view the complex objects. Without using the mass or the volume, the wireframe models come with a limited ability to analyse and test products.

A wireframe model comes with a small file size that offer fast display regeneration, store edge and vertex data. Whereas, the Wireframe models serve as a basis to construct 3 -D surface and solid models . It provides the geometry for 2-D drawings. One can rotate and repurposing a wireframe model by producing the 2-D views. The Wireframe models uses 3D CNC machine code with ease.



A surface model use data about object vertices, edges, and surfaces. It comes with an outer boundary object that connects to vertices and edges. The surfaces display shade, color, reflection, and texture that helps to improve visualisation. Surfaces reduce uncertainty about design intent and offer a true representation of a product. Surface modelling provides the ability to create complex curves and forms.


3D surface modelling is commonly used for CAD industry, particularly used for conceptual design and industrial design to construct certain shapes. A surface model has zero thickness, lacks mass, and do not enclose a volume. The Surface models allow uses basic calculations that includes surface area and volume, but without mass. It comes with limited ability to analyse and test physical and inertial properties. With time the most common users of surface models are designers that primarily concerned with the external shape and appearance of a product.


The hull design is a common application for  surface modelling . The automobile body panel is another example of a product that needs to have an accurate surface. It covers animations, video games, virtual reality programs, and other programs that use similar requirements to form complex surfaces, especially when solids are unnecessary and file size is generally smaller than solid model files.

Surface models serve as a basis to construct 3-D solid models, and provide the geometry for 2-D drawings. It can rotate and repurpose a surface model to produce the 2-D views and display realistic surfaces on the 3-D representation.



3A solid model is one of the most complex CAD formats that contains data about object edges, vertices, surfaces, and mass. Talking about Solid models, it’s most common 3-D CAD format used in the current CAD industry. It encloses a volume and has mass that allows designers and engineers to analyze the exterior and interior object characteristics. In contrast to a 2-D drawing , it offers a note that specifies the material assigned to a product.

gas powered drill solid model

It comes with using 3-D surface model that displays a representation of material on surfaces. It assigns material to a solid model for analysing and testing physical and inertial properties. As a result, a solid model acts as a digital prototype of a product. It provides the geometry for 2-D drawings. We are best Australian Design & Drafting Services company to offer excellent CAD Design and Drafting. Contact Us  to clear your doubts.

different types of cadd formats



There are several different CADD formats. The most recognized CADD formats include 2D drawing s and 3D wireframe , surface, and solid models. In general, 2-D drawings and 3-D solid models are the most common CADD formats currently used in the industry. Three-dimensional surface models are also widely used, but often for specific applications. Three-dimensional wireframe models are rare in the current industry. Software specifies the CADD format, which usually focuses on a certain process such as 2-D drawing or 3-D solid modeling.

However, some systems offer tools for working in a variety of formats or the ability to use drawing or model content created in a different format. For example, you can often develop a 2D drawing from 3D model geometry or build a 3-D solid model from 3-D surface model geometry. A software add-on or separate application is sometimes required to work with multiple CADD formats.


Several factors influence CADD software and format selection. Design and drafting practices and specific project requirements are primary considerations. Two-dimensional drawings are often required because they are the standard format in manufacturing and construction.

The figure shows a 2-D structural detail required for the construction of a building. In addition, 2-D drawing is effective for a project that is quick to design, does not require extensive revision, and does not require advanced visualization, simulation, and analysis. Three-dimensional solid modeling is a better solution when a complex project will require extensive revision and when advanced visualization, simulation, and analysis are required. A 3-D representation of a design can help overcome visualization problems and produce a realistic, testable product model.


The figure shows a multidiscipline 3D model of a building providing structural, electrical, HVAC, and piping layouts. When applied correctly, a combination of CADD formats and software may prove most effective for a project. Bringing the advantages of each CADD format together maximizes product design flexibility and effectiveness.

Collaboration and communication during a project also influence CADD software and format selection. Everyone involved in a project must be able to use a common CADD format or be able to easily convert data to a usable format. Costs are another important factor to consider when choosing a CADD software and format. For example, advanced 3-D solid modeling software is generally more expensive than 2-D drafting software. Operating a new or different CADD system also requires training and time to learn. Training is an expense and takes time from projects that produce income. A more capable CAD format, such as 3D solid modeling , is extremely cost-effective for some users, especially over time, but others will never benefit from the initial costs of the software and training. Several additional factors also influence selecting CADD software and format, including choosing a product and a format that is a known industry standard for project requirements, software stability and usability, the availability and effectiveness of support and training, and personal preference.

Australian Design & Drafting Services provide excellent service for CAD Design and  Drafting.  Contact Us  for more info

28加拿大软件168开奖 dota2公告新版v0.3 全球电竞直播赛事网站 玩嘉电竞下载注册 lpl职业联赛 蜂巢电子竞技公告积分