3d scanning future

The Future – Desktop 3D Scanning and Manufacturing

Before we finish our series “Everything you always wanted to know about 3D scanning” we wanted to take a moment to talk about what we think is the immediate future in 3D scanning and manufacturing: the technology is going Desktop.

In the last few years, companies have been creating more products with smaller footprints, at much lower price points, making the technology a viable tool for schools and medium to small businesses. In addition to these new products, students and hobbyists have been creating (and sharing) do-it-yourself versions of 3D scanning and rapid manufacturing products. Soon we could see 3D scanners and printers in home offices!

Coming in the near future – to a home workshop near you!


Commercial Desktop and Handheld Scanners:

There are a few digitizers and scanners out there that are sized and priced for the small business. The price points are not yet for your everyday consumer, but it is getting closer all of the time.

  • One of our favourite desktop digitizer/scanners is the Microscribe . It is a miniature articulating arm that is easily portable, is compatible with most popular reverse engineering and metrology packages, and offers near metrology level accuracy in a small package. Obviously you are not going to digitize an aeroplane with this – but we consider it the first major desktop digitizer (an attachable scanner is also available).
  • 3D metrology has also entered the realm of handheld and wireless. the microscope also now offer the MobiGage , the first handheld 3D metrology app. You don’t even need a computer, just a Microscribe and an iPhone or iPod Touch, to take measurements.
  • Next Engine also offers a desktop 3D laser scanner. Its compact size, ease of use, customer support and price point are quickly making it a popular choice for small businesses and individuals.

Open Source, Consumer and Up-Coming Scanning Technologies:

While they don’t come close to offering the same kind of accuracy as currently available scanning systems, there is a burgeoning community of small businesses, hobbyists and students who are working to bring 3D scanners into the home. New products are rapidly developing.

  • Qi Pan, a student at Cambridge University has created ProFORMA, which uses a webcam to collect data and create a colour 3D model.
  • David Laser Scanner offers a kit to build your own basic scanning system using everyday objects like a webcam and handheld laser pointer.
  • Perhaps the ultimate in DIY scanners, Friederich Kirschner used Legos, a webcam and some milk to create 3D models.

Desktop 3D Printers:

Like 3D scanners, 3D printers have already reached the small business market and are now just entering the individual consumer marketplace. Their build envelopes are limited but what could be cooler than printing your own action figures, robot parts, or 3D portraits?

  • The RepRap project is an open-source project aimed at creating self-replication rapid manufacturing machines. Based out of Bath University, the project shares its plans and the RepRap community can build as is or make their own improvements, which they can then share.
  • At the other end of the Desktop 3D printer spectrum comes the V Flash from 3D Systems. Rather than making your 3D printer from scratch, you can buy this smaller version of traditional additive manufacturing technology. It is priced for small businesses and schools.
  • In the same market space as the V Flash, Solido bills their SolidPro300 as the “world’s most cost-efficient and flexible 3D printer”. In the US the SolidPro300 is distributed by Enser.
  • Between RepRap, the V Flash, and SolidPro300 comes to the Makerbot Cupcake CNC. Makerbot sells a kit for the Cupcake CNC but the customer puts it together. Like RepRap, they also host a community called Thingverse. Though their community revolves more around the 3D models than the machine itself. They are also working on a 3D scanning kit.
  • HP has also recently announced that they are entering the market in an agreement with Stratysis who will produce mainstream 3D printers using Fused Deposition Modeling technology.

The above examples are just a small selection from a quickly developing marketplace, but they are a good indication of what home scanning technologies are just around the corner. Thanks for reading “Everything you always wanted to know about 3D scanning”, we hope it is has been an informative series!

Contact Australian Design & Drafting Services for more information..

rapid prototyping service brisbane

Everything You Always Wanted to Know About 3d Scanning Rapid Prototyping

From Digital to Physical – Rapid Prototyping and Milling

We discuss physical objects that realm into digital form. We came across a common application used for 3D scanning and  modelling  processes. We mainly focus on creating physical objects from digital data.

Important Terminology

  • Additive Manufacturing: The process makes a physical object 3D digital data that use layering materials called rapid prototyping and 3D printing.
  • Milling: It’s a subtractive process that helps to remove material and create a physical object directly from 3D digital data. It cuts away all existing solid material.

APPLICATIONS

You may ask, why does one need a physical replication of my digital model? After all, we talk about turning your physical parts into various digital formats. But there are a few reasons to create new physical models for your data. Here are a few reasons:

  • Scaling: To make enlargements, reductions, or even exact size replicas. After a Digital Model is created, it comes with boundaries big or small to replicate your object or part.
  • Restoration: Our tech captures accurate 3D data that uses manufacturing to restore objects damaged by weather and other natural disasters. It uses historical monuments and artifacts or aged automotive parts.
  • Manufacturing Prototype: It uses a digital model and direct dimensions to create a physical prototype used for testing and manufacturing final pieces. It includes milling a foam sculpture with that bronze casting pattern to create a finished prototype. We talk about the best ways to create physical models.

ADDITIVE MANUFACTURING (AM)

Variety of additive manufacturing equipment manufacturers and processes on the market. Various machines read 3D data, typically in an STL file format. We discussed format in earlier editions where the software comes within the devices and generates the layering instructions. It directs the deposition of successive layers, adding material needed to build up the physical part. Essentially, it creates cross-sectional layers. The layers fused automatically to make the final shape. It comes with an exact physical replica of the 3D model. The manufacturing of an umbrella term covers a lot of processes.

One of the earliest and most common types of AM is called Stereolithography. SLA builds pieces that use laser and a vat of UV-curable liquid resin. Each thin layer of resin is solidified and secured to the layer below with every pass of the UV laser. SLA offers the best producing models, patterns, and various prototypes. SLA generally support structures that include building a part of the SLA process.

The process offers Selective Laser Sintering that utilises a wide variety of materials that cover metals, plastics and ceramics with post-processing as needed. SLS does not require support material while building since it is made within the raw material. SLS uses these materials in a powder format and, by fusing the powder, creates the layers needed to build the part. It is used for making final parts for mass-scale production isn’t necessary.

Stereolithography is mostly used for Fused Deposition Modelling (FDM). It is trademarked and marketed by Stratasys, which uses the additive platform to build the concept. Rather than raw liquid or powder, FDM uses thermoplastic materials applied through a heated nozzle placed in a single thermoplastic bead at a time. These beads fuse using harden as cooled. The plastics used in FDM are known for strength and high heat resistance and are suitable for product testing.

2D printing is the concept of 3D Inkjet Printing. The  rapid prototyping  technique uses 3D printing for powder base material to print in multiple colours. Rather than sintering the powder, an inkjet releases an adhesive colouring that allows layers to be built with colours. The final model is not generally, as strong as the other techniques. It’s cheaper and faster, and the coloured prints allow a good representation of the last concepts.

The primary advantage of additive fabrication is that it creates a relatively inexpensive feature. We offer a small part price to complexity ratio. However, the overall volume comes within a single build using limited AM for larger parts that recommend milling.

MILLING

Milling comes with a subtractive manufacturing technique. It’s used to create metal production tools, parts, and moulds for virtually any industry, an engineer, or even an artist. Counts this as a well-tested valuable method. The advanced Computer Numerical Control (CNC) milling machines use a 3D  CAD  file to create a physical reproduction of the digital model. Based on AM, CNC milling machines utilise a highly diverse range of materials, including:

  • Stones
  • Plastics
  • Woods
  • Waxes
  • Metals
  • Even Glasses

Milling steel or aluminium is a standard option to make durable tooling. And stone and wood are common for sculpture and historical restoration projects.  

WHERE IS THIS ALL GOING?

To wrap it, the field is constantly changing and growing. Adding immediate future technologies, we include desktop scanning and manufacturing.  Contact  Australian Design &  Drafting  Services in cased in case of any query.

 

3D Data for Visualization brisbane

Using 3D Data for Visualization

While we touched on visualization , one of several downstream applications in Chapter Six, the subject is so comprehensive that it deserves a chapter of its own.

As our lives become increasingly digital and interactive (via the web, video games, and even television and our cell phones), we have come to expect ever more realistic interpretations of real-world objects within this virtual realm. One of the best ways to perfect the digital form is to actually copy the shape of objects into 3D via laser scanning and digital imaging.


Visualization applications generally fall into the following categories:

  • Animations - 3D digital movies made from computer models
  • Renderings - 2D images made from computer models
  • Direct 3Dviews - real-time interactive web-based 3D visualizations
  • ShapeShot™ - real-time interactive web-based 3D facial images

Animations

When most people think of computer animation they think of the neat special effects in blockbuster movies and the animated explanations of complex events on the nightly news, such as train accidents. Yes - 3D models are frequently used for those types of animations . But often these animations are pure visualizations where the dimensional accuracy of the objects is less important – as long as it looks good.

Our brand of 3D scanning and modelling is more valuable when the quality of the models is critical, such as for museum objects, or military simulations, or for animating highly recognizable objects for tv commercials such as cars. These situations require accuracy and authenticity, which scanning provides, so the objects in the animations look as real as possible. Often real colours and textures are captured and applied to provide that much more realism.

We have created numerous 3D animations from our 3D scanned models for a wide variety of applications including illustrating complex medical procedures, forensic analysis, describing historic preservation sites, and even for Hollywood movies and commercials.

Renderings

Rendering is the process of creating a still image from a 3D model. High-quality 2D renderings are often created from an existing 3D model that was originally captured for other purposes. These renderings can be used for graphical presentations, marketing, and even websites. For instance, if a product designer has created a hand-carved physical model for reverse engineering purposes, he can also use that same digital file to create awesome 2D images of his product for marketing graphics. The great thing about a rendering created from a 3D model is that it is highly accurate and quick to render out multiple lighting and background states to create multiple renderings without staging new photography shoots.

Direct 3Dviews

A Direct 3Dview is a fully-interactive real-time 3D presentation of a digital model in a virtual environment. This 3D model visualization can be displayed via a website, a PowerPoint, or even in a stand-alone format. The Direct 3Dview of your object can be used to create an online 3D catalogue to allow web visitors to fully experience the product - virtually. Another great application is for 3D proofs of concept for a new design or invention in a collaborative viewing environment.

Features of the Direct 3Dview include:

  • The smallest viewer on the web - the one-time plug-in is only 130KB
  • Smaller digital file sizes = faster download times
  • Easily integrates into web sites
  • Viewer supported in an e-mail as well as PowerPoint
  • View file in actual 3D, not a series of images

ShapeShot™

ShapeShots™ are high-resolution 3D snapshots of faces that are incredibly life-like. ShapeShot™ enables online personal interaction with amazingly real 3D avatars of you, friends, and family for social networking, online gaming, virtual collaborative environments, and fabrication of personalized consumer products.

New advances in 3D imaging technology have made it to possible to capture faces in a split second and receive an interactive 3D model within minutes with almost no effort.

From the Virtual to the Physical

The above examples are just a drop in the bucket when it comes to visualization applications. But what happens if you want to take your 3D model and make a physical copy of it? For instance, can you take your Guitar Hero avatar and get a physical 3D copy made? You can, and that process is called Rapid Prototyping or RP. Rapid Prototyping is just one of many technologies that fall into the “3D Printing” category and we’ll be talking about that next.

Happy Very Brand New year to All of you.

Contact  Australian Design & Drafting Services for more information..

 

28加拿大软件168开奖 dota2公告新版v0.3 全球电竞直播赛事网站 玩嘉电竞下载注册 lpl职业联赛 蜂巢电子竞技公告积分