3d cad digital model formats


Digital Model Formats - The Many Flavors of 3D CAD

We would like to take a little pause here and discuss things you can do with a  CAD  model. It led to questions like how to use the OBJ file and how it's different from an STL? Can an  IGES  and a STEP file be used for the same thing? We call the "Flavours" of CAD that provide the shortlist to help clear some details.


  • OB体育ob体育官网 - This is a native AutoCAD drawing file
  • ASCII (or ASC) – an X, Y, Z point cloud file in ASCII text format.
  • IGES – "Initial Graphics Exchange Specification" - a neutral format for exchanging CAD data between many different software programs
  • DXF – "Drawing Interchange File" - a neutral version of a OB体育ob体育官网 file
  • OBJ – an open data format that represents the vertices of polygons
  • SLDPRT – a native CAD format for SolidWorks
  • PRT – a native  CAD format for Pro/ ENGINEER  and NX
  • STEP – "Standard for the Exchange of Product model data" (ISO 10303), an advanced neutral format for exchanging CAD data between many software programs.
  • STL – "Standard Tessellation Language" - a polygonal model format similar to OBJ and several others
  • WRL (VRML) – "Virtual Reality Modelling Language," a polygonal file similar to OBJ, STL and several others and can include colour
  • X_T - a semi-neutral CAD format
  • Wikipedia maintains a list of CAD file formats that interest List of File Formats adding Computer-aided design.


  • From the above 0..list, one can notice neutral CAD formats that come with specifically IGES and STEP formats. The two formats create a neutral exchange of 3D CAD data across different CAD packages.
  • IGES created in 1979 along with the group of users, and it supports the Department of Defence (DoD) and NIST with exchanging data with ease. Since the late '80s'80s, the DoD has offered Digital Project Manufacturing Data (PMI) with deliverables in IGES format.
  • STEP offer ISO standard released in 1994 with becoming a "successor" to IGES. At the same time, using it with not replace the IGES format.


While the above examples, it comes with the standard across CAD packages. It uses industries like Architecture. 3D modelling mainly uses computer graphics with their packages and file types. We like to think of these as extra flavours, like CAD dessert.

3D Graphics – 3D graphics formats generally work based on the package. Few popular graphics programs come with 3D +Studio Max, Lightwave and Maya. Few popular gaming companies, including Blizzard Entertainment and other film studios, often develop their in-house formats. However, many consumer 3D graphics packages can import OBJ files.

3D Modelling for Architecture: It comes with a new modelling style for facilities, such as buildings and processing plants, which are developing rapidly. The CAD software contains a relational database component to store metadata for the design entities, such as the style and make of windows or doors or the schedule of the I-beams and piping. The new class of software called BIM mainly uses building information modelling to combine facilities management into the database concept.

By checking the above examples, it's just a tiny taste that comes with the "flavours" of CAD. But they are the most common files used. Hopefully, this will help to get a better understanding. If you have any queries, ask for a 3D  service  provider and contact us at info@astcad.com.au.

Downstream Applications for 3D Data 3d scanning

Everything One Wanted to Know About 3d Scanning Downstream Applications For 3d Data

Downstream Applications for 3D Data

What to do with a  3D  model? Practically anything! Today, in this world that's increasingly digital, most industries now utilize 3D files in some fashion. It shows up in many different places lately.

At this point, you have your 3D model from your scanned original part. It modelled digitally into a polygon format with reverse-engineered  CAD  format. Based on your needs, one can do things like adding 3D data that might thought of yet with covering different downstream applications used for  3D  data file.

Downstream applications fall into the followings categories:

  • Re-Engineering/Design
  • Documentation/Archival
  • Industry-specific Applications
  • Visualization/Animation
  • Inspection/Analysis
  • Replication/Reproduction  


As your part or object, the laser scanned and modelled adding digital "backup" of the object. Scan data for archival purposes mainly used for a number of industries covering Aerospace, Consumer Products, Architecture and Museum/Fine Art. We at Australian Design and Drafting services, offer scanned objects that specifically used for the purpose of creating a  digital  document.

The digital model mainly used for:

  • Protecting accidental part loss, used for almost insurance policy.
  • It provides you working with "virtual" blueprint in order to recreate, rebuild, or remanufacture.
  • It gives ability to start from a base model with creating something new without requiring to start from scratch.  


The Reverse Engineering process used as an application that mainly work as Aerospace/Defence and Industrial Design industries. With using a Reverse Engineered model, one makes engineering and design changes in object adding a variety of ways and use it for specific types of analysis including:

  • Use various model for FEA and similar analyses
  • Add or subtract design features into current existing part or object
  • It uses base model to design new piece or object.


It uses process, adding inspection 3D data particularly for any types of manufacturing. Use advanced laser scanning adding reverse engineering tools and techniques, Direct Dimensions that inspect and analyze your object or part in a variety of method:

  • Compare scan part that adds "nominal" or intended design model.
  • Compare a scanned object with 2D drawing dimensions.
  • Compare a scanned with another scanned object.


The replication offers early and essential uses for a 3D file. It uses 3D printing process, adding digital file that creates physical part. It adds laser scanned with reverse engineered part. It uses virtually limitless options for replicating that object. It’s used for:

  • Restoration
  • Manufacturing Prototypes
  • Scaling in either direction
  • Making Products  


The app falls into the realm advertising and entertainment adding museum presentations, with adding legal cases, with high-quality training simulations using for 3D model visualizations and animations.

Direct 3Dview to your object used as create online 3D catalogue using proof of concept.

Faces scan a person for animations, mass personalization, avatars, consumer products, adding simulation programs.

  • Animation – The recent people scan, objects, and structures uses to create commercials, music videos, films, and video games.
  • Rendering – It comes with high-quality 2D renderings that uses 3D models for marketing purposes. The structures and viewpoints offer legal cases that provide eyewitness accounts.


  • There are various types of industries that utilise previously listed applications, there adds few 3D model apps along with specific design including:

bim 3d scanning

    • Museum Research/Fine Art: investigative scanning for provenance and comparative research

3d scanning bim

Same 3D Data, Many Different Uses: Repurpose!

Often, with just a little bit of extra work, you can create different, valuable deliverables with the same basic scan data or 3D model. Some examples are:

  • A consumer products company has an object scanned so that it can be prototyped. What they might not know is that with a little tweaking of the model they can also gather the measurements needed to create perfectly fitting packaging and also creating photorealistic models for subsequent advertising or a virtual catalogue.
  • An aerospace company has a cockpit scanned for human factors analysis. If enough data was initially collected, that same data could be used to help create training simulations.
  • A major museum has a sculpture in its collection that is rapidly deteriorating and they want to scan it for documentation. That data could be used to create high-quality mini replications to be sold in the gift shop or for research (possibly comparing it to similar castings by the same artist).

The Sky is the Limit!

The above examples are just a drop in the bucket when it comes to uses for 3D models. If you have a possible application that you think a 3D model would work for, you should just ask your 3D service provider if it can or has been done. If they are anything like us, they will either have already done it (or tried it) or be so intrigued by your application that they are willing to give it a shot! And if you can’t do it yet, check back often; new applications and methods are being invented every day.

The world of 3D imaging, modelling, and engineering continues to grow at such an incredible rate that older applications are always being improved upon and new ones are always being dreamed up.



Everything You Want to Know About 3d Scanning Inspection Analysis

Inspection/Analysis - Comparison to CAD

We move on to downstream applications for  3D models . Before we jump, we need to talk about one more application for scan data. Here we'll cover how this data can be utilized for quality inspection.

Essential Terminology

  • CMM - A  mechanical device, Coordinate Measuring Machine with 3D coordinates. Either touch probe is based or non-contact, portable or stationary, or motorised or manual.
  • Laser Tracker - The laser beam locates a reflective target against the measured object. The beam reflects the tracker by calculating the distance and angle of the location of the target. Later the Laser trackers come with a great option to get accuracy over more extensive measurement ranges.
  • Color Map : It's a graphical display for visualising dimensional differences between the measured object shapes. It's a nominal CAD model to map colour spectrum by indicating location and magnitude.


We think the 3D scanning industry comes with something new, where the first 3D digitisers, Coordinate Measuring Machines (CMMs), were built in the 1960s. It's the entire purpose of development that perform dimensional inspections. In the last few years, checks have been made with the most common uses for 3D scanning and digitising systems.

The engineers at the then-Martin, Marietta, became aware of a company making articulating arms for medical measurements. Later, they began working with the company to develop a portable CMM for inspections in the aerospace industry.

After creating portable CMM, the options for  3D  measurement and inspection exploded. The laser scanners added to the movable arms and Laser Trackers were quickly developed. Talking about a few years, portable scan arms have offered standard measurement solutions in major manufacturing firms. It comes from aerospace to automotive and power generation to medical.  


  • It comes with different types of inspections utilising 3D technologies:
  • It's one fastest and most informative type of inspection called Dimensional Deviation. The  CAD to Part Inspection covers a typical process Scan Arm. The scan data is compared to the original  CAD model , offering a software package showing deviations by a colour map. A variation offer Dimensional Deviation is the Virtual Assembly Analysis. With reference points, the interface datums come with the capability of adding a virtual environment, simulating and identifying how parts fit together in real-world assembly.
  • We use the part's assembly characteristics that apply the mating constraints during assembly. It's called "reference point fit", which adds control part movement in each control point. The analysis offer collision in a real-world scenario done virtually.
  • It measured the process of being machined. It comes with On-Machine Inspection that allows essential characteristics to be measured and changes the tool to be created. It is typically done using a Portable CMM with probe and scanner. The laser tracker depends on the size of the object that's being machined.
  • Similar to on-machine inspections, it uses real-time inspections for Installation Alignment. It uses significant equipment for laser trackers, PCMM, and more. It offers comprehensive assessments for First Article Inspection (FAI). It involves thoroughly inspecting a physical part against the production drawing dimensions. The typical process comes with portable CMM.  


The products take 3D measured data from the portable arms and scanners and perform the inspection analysis. Each capability performs two main inspection types: discreet point dimensional inspection and dense point cloud comparison analysis. The comprehensive capabilities come with GD&T or special case analyses. It's specialised in certain areas that use multi-scanner integration. It supports the customer in understanding the strengths of each package relative to using specific applications and company requirements. If we perform the project for someone as a service, it's known as the best software for inspection. Contact us to get more specific packages.

  • CAM 2 Measure X (by Faro)
  • InnovMetric PolyWorks Inspector
  • Geomagic Qualify
  • Verisurf
  • Rapidform XOV

What you do with your data: inspect, model digitally and reverse engineering.  Contact  Australian Design & Drafting Services to know more about information.

28加拿大软件168开奖 dota2公告新版v0.3 全球电竞直播赛事网站 玩嘉电竞下载注册 lpl职业联赛 蜂巢电子竞技公告积分