3D SCANNING REVERSE ENGINEERING

Reverse Engineering

Converting Raw Point Clouds into CAD Formats:

FILES BROUGHT INTO PARAMETRIC MODELERS

Processing 3D data into polygonal models and dumb solids adds a simple mesh file for geometry features that enables to redesign process. It categorised the processing of collected data into two main categories: reverse engineering and  Digital Modelling . Digital Modelling uses these simpler model formats that we call Reverse Engineering.

  • Reverse Engineering: It’s the process of measuring and creating a CAD model of an object that reflects how the object designed initially been.
  • Design Intent: The intended design comes with an in-built physical object where the manufactured part varies from its original intended design. The imperfections can be identified, well-analysed, and corrected using reverse engineering.
  • As-Built: The modelling captures the physical shape of an object that actually comes with its imperfections.

WHEN SHOULD ONE REQUEST A PARAMETRIC MODEL VS. THE SIMPLER RAPID NURBS OR POLYGONAL MESH MODEL?

When any project falls into the category of Reverse Engineering, is it opposed to Digital Modelling? Why one should opt for Reverse Engineering, which sounds time-consuming, requires additional processing, and is probably more expensive?

Our recommendation depends on many factors that include shapes such as organic vs. geo metrics to get desired file output. If you’re seeking to make a Rapid Prototype of a hand-carved chair seat, then doing digital modelling can be an excellent option for you. If you scan an aeroplane that creates an accurate model for CFD analysis, you need a model for flow analysis. It comes with an engine casing to redesign and spend the time and effort required to create a fully reversed engineered model.

The desired file output is the main difference between Digital Modelling and Reverse Engineering. People select Digital Modelling for using the file,  Rapid  Prototyping or visualisation purposes. One needs to redesign purposes for importing models into analysis programs that choose Reverse Engineer, which brings files into parametric modelling software. It essentially adds four types of models.

A Rapid NURBS starts with adding a polygonal model. The NURBS surfaces can be wrapped over the polygonal mesh. The wrapped surface model works more smoothly than a polygonal model with no regular geometric features. This type of NURBS model brought into parametric modellers, which we call dumb.

The bridge between Digital Modelling and  Reverse Engineering  is called Hybrid Model. Where a hybrid model and polygonal model convert into a rapid NURBS surface model that uses traditional solid modelling techniques. It’s used to add basic geometric features to cover holes & edges, adding complex organic contours.

The Hybrid model steps up fully Rapid NURBS for both time and effort. It is not as time-consuming and comes with an entirely reverse engineered parametric model. Unlike the Rapid NURBS, which wraps around a polygonal frame, the hybrid dumb solid contains geometric features, including holes, planes, and radii, adding features with no parametric history. While an entirely reverse engineered Parametric Model offer fully functional features that allow complete redesign. The models are built from scratch, making them perfect for the reverse engineering of legacy parts and redesigns.

DESIGN INTENT OR AS-BUILT?

When choosing a reverse engineer part, deciding if the part is reverse engineered as-built with its design intent is essential. It comes with physical production parts that are fractions of millimetres and worn down a bit from the original fabrication. It’s necessary to clarify the end use of the data by discussing your  project  with a reverse engineering firm.

THE REVERSE ENGINEERING ADVANTAGE

It comes with the fine line between Digital Modelling and Reverse Engineering. Both methods come with a valid solution to 3D problems. Few advantages of Reverse Engineering include:

Parametric Modelling Packages covering solid modelling CAD software

Parametric Models feature tree that can editable.

Few other Rapid NURBS dumb solids, reverse engineered models contain geometric features covering planes and radii that make the models a better fit to measure and design.

Reverse engineered models come with excellent analysis software for CFD and FEA.

GETTING STARTED

Direct Dimensions include:

  • Geomagic
  • Imageware
  • Innovmetric PolyWorks
  • Rapidform

The CAD packages frequently cover  AutoCAD , CATIA, SolidWorks, Siemens NX, ProEngineer, and Rhino3D.

WHAT ELSE CAN I DO WITH A MODEL?

Now that you know about Digital Modelling and Reverse Engineering, you may feel like you don’t need anything else to create 3D models. If you want to make use of the 3D model, Contact Australian Design & Drafting Services to resolve your query.

Digital Modeling

Everything You Always Wanted to Know About 3D Scanning – Digital Modeling

Converting Raw Point Clouds into CAD Formats

You’ve read your overview, figured out how to collect data, and now that you have this data, what do you do with it?

As you learned in Chapter Two, Direct Dimensions breaks data collection into two common methods: Laser Scanning and Digitizing. We also categorize the processing of the collected data into two main categories: Digital Modeling and Reverse Engineering. In this chapter, we’ll tell you what you need to know about Digital Modeling.


Digital Modeling: the process of creating a computer model of an object that exactly replicates the form of the object. Laser scanners are used to capture the 3D data of the object, and this data is transferred to the computer where it is aligned, edited and finalized as a complete 3D model.


Polygonal Models and Dumb Solids

So, when does something fall into the category of Digital Modeling as opposed to Reverse Engineering? At DDI it generally depends on a couple of factors: shape (organic vs. geometric) and desired file output. As a general rule of thumb, organic shapes tend to fall into the Digital Modeling category, as do polygonal models (STL Files) and Rapid NURBS Dumb Solids.

A Polygonal Model is a faceted (or tessellated) model consisting of many triangles. Facets are formed by connecting points within the point cloud. STL files can be used for visualization, rapid prototyping, design, milling, and analysis software.

A Rapid NURBS ‘Dumb’ Solid (usually in IGS format) starts with the polygonal model. NURBS surfaces are wrapped over the polygonal wireframe. This wrapped surface model is smoother than a polygonal model. The NURBS model can be brought into parametric modellers such as SolidWorks (albeit with no parametric history – which is why we call it dumb).

The bridge between Digital Modeling and Reverse Engineering is the hybrid  Model . A Hybrid model is a polygonal model that has been converted in a rapid NURBS surface model and then also uses traditional solid modelling techniques. It is commonly used when basic geometric features, such as holes & edges, blend with complex organic contours, such as a machined casting.

Do Reverse Engineering and Digital Modeling ever Overlap?

 

In addition to Hybrid Models, there are instances when it is appropriate to use both Digital Modeling and Reverse Engineering techniques. For example, when collecting data of a large object (such as a plane) for Reverse Engineering, it is necessary to use a laser scanner to capture the massive amounts of surface data. The data output from a laser scanner is a point cloud, but point clouds cannot be brought into any CAD packages. Before the data can be transferred into CAD it must be digitally modelled into either a polygonal model or a Rapid NURBS dumb solid.

The Digital Modeling Advantage

There can be a fine line between Digital Modeling and Reverse Engineering and sometimes both methods can be a valid solution to 3D problems. Some advantages of Digital Modeling are:

  • Digital Modeling generally offers a faster and more cost-effective solution.
  • It presents a great solution for creating solid models when an object has organic contours.
  • Offers excellent dimensional accuracy and can be utilized for comparative analysis.
  • While it is true that Rapid NURBS Dumb Solid models do not have parametric history, they can be utilized as a base for design work and Boolean functions are possible.
  • Unlike raw point clouds, Digital Models can be visualized in rendering software as a solid object, which is great for seeing the overall shape and contour of the model.

Getting Started

In Chapter Two we discussed data collection and various brands of scanners and digitizers that we use on a daily basis. Don’t worry! We won’t leave you hanging on what software packages we recommend for digital modelling. We use the following packages every day at DDI (in alphabetical order):

  • Geomagic Shape Studio : Polygonal and NURBS modelling and point cloud to CAD comparison. Geomagic can automatically generate an accurate digital model from any physical part.
  • PolyWorks Modeler : Polygonal modelling and point cloud to CAD comparison. PolyWorks can process large point clouds over 100 million points and easily integrates with all standard digitizers and articulating arms.
  • Rapidform : Third generation point processing software for creating native parametric "design-intent" CAD models directly from scan data. At Direct Dimensions, we often use Rapidform in Hybrid Modeling but it also has a great Rapid NURBS function.

Tackling Reverse Engineering

Now that you know a bit more about what we call Digital Modeling and why it can be a great option, you are ready to tackle Reverse Engineering in next post.

Contact Australian Design & Drafting Services for more information..

 

3d scanning service brisbane

Everything You Always Wanted to Know About 3D Scanning – Data Collection

Now that you have a basic idea about how 3D scanning and modelling work, let’s really get started. Before you can have a 3D model, you must have 3D data to create that model. Let’s start there…

So, what are the ways that 3D data can be collected?

There are multiple ways to collect 3D data but two of the most common methods (and the two most frequently used by ASTCAD) are laser scanning and digitizing.

During laser scanning , a laser line is passed over the surface of an object in order to record three-dimensional information. The surface data is captured by a camera sensor mounted in the laser scanner which records accurate dense 3D points in space, allowing for very accurate data without ever touching the object.

Laser scanners can be broken down further into types such as laser line, patch, and spherical. The FARO ScanArm, the FARO LS, the Surphaser, Konica Minolta Vivid 9i and Range 7 are some examples of laser scanners that we often use at Direct Dimensions.

The second major method is digitizing , which is a contact-based form of 3D data collection. This is generally done by touching a probe to various points on the surface of the object to record 3D information. Using a point or ball probe allows the user to collect individual 3D data points of an object in space rather than large swathes of points at a time, like laser scanning. This method of data collection is generally more accurate for defining the geometric form of an object rather than organic freeform shapes. Digitizing is especially useful for industrial reverse engineering applications when precision is the most important factor. Stationary CMM’s (coordinate measurement machine), portable CMM arms, and the FARO Laser Tracker are all examples of digitizers that we often use at Direct Dimensions.

Other methods of collecting 3D data include white light scanning, CT scanning and photo image-based systems. These technologies are being utilized more frequently in the field of 3D scanning and new applications are being discovered every day.

To be digitized or laser scanned?

A general “rule” is that scanning is better for organic shapes and digitizing is most accurate for geometric shapes. In general, laser scanning is also used for higher-volume work (larger objects like cars, planes, and buildings). Laser scanning is also a great option for people who need 3D data of an object but would prefer that the object not be touched, such as for documentation of important artifacts.

Digitizing is often used for our engineering projects and first article inspections, in instances where precise measurements are required for geometrically-shaped subjects. This includes objects that have defined lines and planes and curved shapes, like spheres and cylinders.

This doesn’t mean that you can never laser scan a part with many geometric features or that you can’t digitize a plane (an entire plane can be digitized, believe us – we’ve done it!) or even a sculpture. These are just rules of thumb.

Utilizing multiple methods of Data Collection

There are projects when it is more cost and time effective to use multiple methods of data collection. A good example is a cast part with geometric machined features. You might need a 3D model of the entire part but really need incredible accuracy on the machined features while the freeform cast surface itself is not as important. In such a case it can be much more effective to laser scan the entire part and then digitize the geometric features. The data can be combined during the modelling phase (more on that in the following chapters).

Additional Scanning Information

Because you are trying to collect the most accurate data possible, there are a few more things to keep in mind before you run out and start scanning everything in sight.

  • Bright light sources in the area, including the sun, can really mess up your scan data. At Direct Dimensions, if we are laser scanning an object outdoors we prefer to do it at night if able. Light can reflect off of your scanning object and create “noisy” data. This brings us to:
  • Very reflective materials generally do not scan well. This can be avoided with a light coating of white powder spray (or anything that dulls the reflectivity). There are also some scanner manufacturers who are actively working to solve this problem.
  • Fixturing: whether you are laser scanning or digitizing, it important that your scan object will not move while you are collecting data. The tiniest motion will cause inaccurate data.
  • If you need hard to reach/impossible to see internal data, you should consider CT scanning or destructive slicing, both can be great ways to augment your data. (more on those later).

Moving on to 3D modelling

Now that you have a good idea of what you need to collect data, you are ready to learn all about the various ways the data can be modelled. Chapters three through five will cover, 3D Modeling, Reverse Engineering, and Inspection Analysis.

Contact Australian Design & Drafting Services for more information.

3d scanning process 3d model

Everything You Wanted to Know About 3d Scanning – The Basics

With passing time, we meet many people who find our work interesting as we use 3D scanning technologies. We at Australian Design and Drafting Service company offer easy 3D scanning that helps the user to discover the ways to provide cutting-edge technologies.

3D Scanning topics we use here:

Chapter 1: The 3D Scanning Basics and Digital Modelling

Chapter 2: Different Methods for Data Collection

Chapter 3: Digital Modelling – Converting Raw Point Clouds into CAD Formats

Chapter 4: Reverse Engineering – To Design-Intent CAD Models

Chapter 5: Inspection / Analysis – To Compare with CAD

Chapter 6: Downstream the Main Applications for 3D Data Basics

Chapter 7: Digital Model Formats – Several Flavours of 3D CAD

Chapter 8: Using 3D Data for Visualisation

Chapter 9: Rapid Prototyping – To Make Physical Objects from Scan Data

Chapter 10: The Future – To Scan Desktop and other Manufacturing

THE BASICS

WHAT IS 3D MODEL, AND HOW DO YOU GET IT?

A 3D model comes with a digital representation of a physical object. If your object wants digital form, then use the direct dimensions that take physical objects and use advanced 3D scanning equipment to capture and transform them into 3D digital models.

We have an excellent team that processes the raw data gathered during a 3D scan into a digital model. We use different methods for collecting this data, including laser scanning and other digitising. A 3D model is incredibly versatile. Therefore, connect to know the 3D scanning basic.

WHY DO I NEED A 3D MODEL?

3D models are mainly used for several purposes, including animation or visualisation. One can make changes in design to form a new product. They perform a dimensional and comparative analysis of an object or even an FEA and CFD analysis. The team help to archive the purposes by accurately recording the state or form of an object.

They are used to repair the damage done to an object digitally. It reproduces the object in its proper form. They practice rapid prototyping and milling technologies. There are no limits on what can be done when something has been captured in 3D. In short, the technologies allow the physical object to be recreated into a 3D digital format.

WHEN? WHERE? HOW LARGE? WHAT ARE THE LIMITATIONS?

We capture objects indoors or outdoors, during the day or at night, using the technologies. As the sky is the limit, we know how large the technology can capture the smallest objects. Few of our equipment is portable, so we can come to your facility and encourage you to ship your items to our lab. On the large side, the Direct Dimensions scan the entire aeroplanes, historical monuments, stubs and ships, and tracts of land with large interior spaces like buildings.

We’ve scanned the mid-size objects such as spacesuits, countless consumer products and other artwork. We’ve done tiny, finely-detailed items, including coins, medical devices, and other dental appliances. Along with this, we capture fingerprints and skin textures. The bottom line offers the tools to scan it, and it’s most likely to use them.

WHAT’S NEXT? Now that we all understand the basics, we can scan and use the 3D data by learning more about the various methods for data collection! Looking for any 3D scanning work? Do  contact us  for more information.

28加拿大软件168开奖 dota2公告新版v0.3 全球电竞直播赛事网站 玩嘉电竞下载注册 lpl职业联赛 蜂巢电子竞技公告积分