DESIGN OB体育ob体育官网 SERVICE

We at Australian Design and Drafting…" /> DESIGN OB体育ob体育官网 SERVICE

We at Australian Design and Drafting Services, possess the relevant resources…" /> DESIGN OB体育ob体育官网 SERVICE

We at Australian Design and Drafting Services, possess the relevant resources…" />

Australian Design and drafting Services Different Kind of CAD Conversion 6

Different Kind of CAD Conversion

If you want to bring your product to life, you will need to convert your plans, diagrams, sketches and other such files into a CAD format. Whether you plan on redesigning your home or are working for an engineering firm, using CAD will ensure a successful outcome. Instead of struggling with CAD conversion on your own, you can outsource CAD services to an outsourcing service provider. You will not only save on money and time but can also enhance your security for sensitive information.[/fusion_text][fusion_text]

Apart from these advantages, you can get access to different types of CAD conversion , such as the follows:

1. Paper to CAD

Legacy files are difficult to convert into CAD because the input has to be done in specific ways for the conversion. By opting for the paper to CAD conversion services, you will be able to easily send your legacy sketches, hardcopy drawings, blueprints and other such documents to the service provider, who will convert these documents into the CAD format that you desire.

2. Images to CAD

Do you need an image to be converted into CAD for your project? With image to CAD conversion, you can transform any image file (JPG, GIF, TIFF, BMP and PNG) into a varying number of CAD formats, be it AutoCAD and more. This not only saves both time and effort but can give you an accuracy level of 99.9%.

3. 2D to 3D

If you are a part of a design or construction project, then you will know the importance of 2D drafts. Blueprints are in fact one of the most popular of these drafts. Very often the need will arise to create 2D documents into a 3D format and for that, you will need expert 2D to 3D CAD conversion services.

4. PDF to CAD

Almost every project requires extensive planning and note-taking. Very often, these are compiled into a PDF format which can be easily used and shared within a company. However, PDF files can be cumbersome to use and will need to be converted into CAD. An expert service provider can convert any type of PDF (legacy drawings, computer-aided drawings and handwritten specifications) into CAD.

Before you finalize on a CAD service provider, ensure that they offer the above four CAD services as well as other options. You will also need to check if the service provider can guarantee the accuracy of 99.9%. Data security and privacy is something else that you will need to ask your service provider for.

Read more about the CAD conversion services offered by ASTCAD Design and drafting.

 

Australian Design and drafting Services Cost Effective SketchUp Services 5

Cost Effective SketchUp Services

If you have not yet used SketchUp for your business, then it’s time you used the software and reaped the benefits that it offers. With its accuracy of design and flexibility, builders, landscape designers, construction firms and the engineering industry, in general, have been able to effectively conceptualize, market and present their ideas. With the tool’s wide variety of visualizations, your company too can transform your imaginations into reality.[/fusion_text][fusion_text]Features of SketchUp

  • Easy to install and run, with a simple and uncluttered interface
  • Quick and easy modelling options
  • Rapid prototyping with 3D geometry abilities
  • Support from an active community
  • Comprehensive documentation
  • Wide range of colours and models to choose from
  • Options of pre-drawn components

Popular SketchUp modelling services

The SketchUp software can be used for a wide range of services, such as the following:

Through SketchUp, you can visualize real-life scenarios with the use of different options in colours, sizes and shapes. SketchUp services are extremely beneficial for architects, engineering firms, construction companies, builders, contractors, and landscape designers.

Benefits of outsourcing SketchUp services

SketchUp has opened a whole range of design and modelling possibilities. However, if you and your team do not know how to use SketchUp, then learning and mastering the software can take up time and effort. This is where ASTCAD Design & Drafting comes in. Instead of trying to figure out the use of SketchUp on your own or hiring an expensive team of specialists, you now have the option of outsourcing SketchUp services to ASTCAD Design & Drafting. You will immediately get access to a dedicated team of professionals who have expertise in using SketchUp for designing and modelling. Outsourcing SketchUp can help your business leverage the following benefits:

1. Minimized cost

When you outsource to ASTCAD Design & Drafting, you can enjoy cost savings in terms of overhead cost and capital expenditure. You will also not have to make heavy investments in technology or infrastructure. Outsourcing can not only help you widen your profitability but can also help you minimize your cost by 60%.

2. Better resource optimization

Through outsourcing, you can free up your time and resources, while tapping into the expertise on SketchUp artists. Your management can focus completely on your core business activities like sales, marketing and productivity, without having to supervise the outsourced SketchUp services.

3. Fast turnaround time and consistent services

ASTCAD Design & Drafting teams have the capability to work on a 24/7 basis and complete your SketchUp assignments within your timeline and budget constraints. Since the ASTCAD Design & Drafting team will have experience in using SketchUp, they can ensure that all your projects are completed without any setbacks.

4. Access to superior SketchUp skills

SketchUp artists from ASTCAD Design & Drafting have expertise and skill in using all the features of SketchUp. They are also constantly provided with training in order to effectively meet the SketchUp requirements of customers. Outsourcing can give you access to a skilled team of designers who will ensure your project is a success.

Why not give your business a competitive edge by outsourcing SketchUp services? We, at ASTCAD Design & Drafting, will be glad to assist you with your requirements. Get in touch with us for SketchUp services.

Australian Design and drafting Services 3D printing house to build in 20 hours! 5

3D printing house to build in 20 hours!

3D printing  technology uses the latest “ultra-cool” movement. Ever since we heard about 3D printing, we remember the  small 3D printers . It began to imagine how the world would look if 3D printing became such a common procedure as paper printing.

There’s a world full of home-made toys, dishes, utensils, and lots more. What if 3D printing offer excellent solution with solve the issue of shelter around the globe. What if there could provide a feasible solution to a 3D print houses?

The idea of ContourCrafting comes when CEO offer a very insightful TED talk. The Professor Behrokh Khoshnevis, from the University of Southern California, is the man that have built this awesome concept. In simple words, he wants to make a  3D printer  within 20 hours. The vast  3D home builder  creates the entire building, from the foundation, floor, ceiling, and plumbing. At the beginning, we thought it could build the main block of the building.

The 3D printer from ContourCrafting is far more crafted than this. It would build houses in such a way that you’d only require to put the windows and the doors in the cutouts. The vast construction robot left this. Maybe one wouldn’t like living in such a home built by a  gigantic 3D printer .

But almost 1 billion people don’t have stable shelter. Therefore, do you think, they’ll think twice before moving in? It can be an immediate and most urgent use for 3D printed home. But I can imagine that the rest of us, or those with money, can print their own house in less than one day.

Inspiring 3D printers that will reshape the construction

Right from the start, we were confused that how to build big buildings with hundreds of flats? How are they going to achieve that? But the CountourCrafting guys created the model of a 3D printer. It’s building that capable of designing everything. And something that surprised was some 3D printer capable of climbing and finishing the printing to a next level.

The technology seems very impressive and can build more advanced buildings using advanced designs. We use a perfectly calculated geometry using the strong material. The house-building with 3D printers can replicate historic or progressive buildings. How cool, isn’t it.

It does sounds excellent on paper, but what’s the reality…

Behrokh Khosnevis says, this technology is far more secure and safe than current construction methods. He said that the 10,000 workers die each year in the USA and 400,000 get injured during construction. But with 3D construction printers, we could eliminate and decrease lot of the time that require to build a house. There are drawbacks that we can’t ignore. Let’s discuss them.

Imagine how many jobs get lost if the technology were become mainstreams. We have a team that supports a civilization and rely on the technology. Thus, with being more automated, it manually runs using this technology. Few houses are built using this concept, but it will not gain mass appeal as the government requires to keep the population employed. But again, the same thing happened when the  Industrial Revolution began.

The people were afraid that they would lose jobs as technological devices were there to take tasks from humans. But when we look behind, we see that humanity has found a place for everybody. It can be an issue for the moment, but imagine that by 2050 or beyond 3D printed homes not be just a “cool concept”. Instead, it could be something ordinary. The appearance of the Web won’t kill jobs, it could change the world. The  3D printing won’t kill construction,  it can reshape in near future.

What a brave new world it could be?

The technology is excited that it wants to be a part of it. One can see 3D printed houses around and people living in them. One can see huge 3D printers outside the towns. There could be building from the ground homes for everybody. Let’s imagine using this technology, one can build houses on other planets as well. Get connected, if you’re looking for a leading Australian design and drafting service company, here we are to help you solve your problem.

Australian Design and drafting Services The world’s largest 3D printer 4

The world’s largest 3D printer

3D Printer has made things possible where the sky is just the limit. The 3D Printer is now capable of printing objects as long as 100 feet, 20 feet wide and 10 feet high. A big guy up to 12 meters was built out of the object. He mainly uses the local material that uses less energy as required and makes a house almost zero cost. It offers quick and inexpensive relief to the affected areas in the future. Due to which the rapid population growth and a surge satisfied housing demand.

 

With increasing material manufacturing on Earth, it uses planets that rapidly build houses and tightening budgets that are very interesting viewpoints. In space, it provides us with a lot of  design flexibility  with a unique and highly functional unit. It cannot be assembled with other building methods and make a way out.

 

On this planet,  3D printing houses  have become more common. The United Nations predicts that the world's future will add almost 100,000 new homes a day within five years. Compared with other houses that are cheap and fast building, they are developed for earthquakes, cyclones, floods, and other natural disasters to recover quickly. In case of emergency costs,  energy and material  restrictions are very large, so people never need unusual sources of inspiration.

 

We can say that no one can do better than potter wasps. It methodically comes with countless layers of mud covering layers, eventually forming nest-like pottery. For its part, the industrious insects may be the world's smallest and the most environmentally-friendly 3D printers.

 

One of the widest Italian engineering company manufacture varieties of  WASP 3D printers . In the current plan, they build a shelter for human habitation. Additionally, the company exhibit a 4.5-meter printer that can handle simple and highly flexible material, including mud, clay or other natural fibres. Now, the company is at the peak to create 3D printers. And the 12 meters high 3D Printer is called the Big Delta.

 

It mainly consists of a 6 m diameter solid metal frame supporting simultaneous rotation of the nozzle mixer functions. It can uniformly print material that works in just ten watts. It uses various materials, from clay to clay, that is reinforced with a small number of chemical additives on the structure. They use cement and contradict the  company's green initiatives.

 

The company pass-through 3D printing houses and provide health assistance with affected areas covering the walls of houses repellents. Since 3D printing, such as  a house in shape, size and material selection  are very resilient. They have the potential to meet the needs of developing countries with affected areas. WASP has represented the southern coast of Sardinia Iglesias town which has the least interest in the Big Delta. In recent times, they have used Printer built out of housing units. Using the large Printer, one can accelerate innovation with prototype development in various sectors and achieve their dreams. What are your plans about designing something with a 3D Printer? Let's connect and discuss your idea in brief.

How to Solve Engineering problems with Finite Element Analysis (FEA)

Engineering problems with Finite Element Analysis (FEA)

With finite element analysis or FEA services , you can easily find an apt solution for any complex engineering problem by subdividing your problem into small and manageable finite elements. FEA services involve the use of finite elements to successfully reduce the complex differential equations of a structure to a set of easily solvable linear equations.[/fusion_text][fusion_text]In short, finite element analysis can be described as an engineering technique that is used to predict the response of structures and materials to applied loads such as temperature, force, displacements and vibration. Before you develop a design, you can model it, evaluate its performance and address failure points with FEA services.

Today, almost every engineering discipline requires finite element analysis . Industries like manufacturing, plastics, electronics, energy , geotechnical aerospace, automotive, biomedical and chemicals regularly use FEA services. Apart from playing an integral role in evaluating classical static structural problems, FEA is also widely used in radiation problems, mass transport, dynamics and heat transfer amongst others.

ASTCAD offers cutting-edge FEA services

If your organization wants to optimize a new design, verify the fitness of an existing facility or evaluate a new concept, then you can opt for finite element analysis services from ASTCAD Design & Drafting. Accurate FEA services require the skills of experienced analysts and advanced technologies. ASTCAD can provide you with world-class FEA services at an affordable price. Over the years, ASTCAD has earned the reputation of having the world’s best engineers and access to sophisticated analysis tools.

Get complete FEA solutions from ASTCAD

ASTCAD have the best personnel, latest equipment and cutting-edge tools to perform comprehensive finite element analysis, such as:

  • Mechanical drop and impact analysis
  • Modal analysis and forced vibration (Sine and Random)
  • Thermo-mechanical analysis (Fatigue and Creep)
  • Parametric sensitivity analysis
  • Warpage analysis
  • Material stiffness analysis
  • Shock Spectrum analysis

Top 5 benefits of outsourcing FEA services

By outsourcing finite element analysis services to ASTCAD, your organization can leverage the following five benefits:

  1. Drastically reduce your development time and the cost of new products
  2. Get valuable product reliability insights
  3. Improve the quality of the product
  4. Easily conduct and simulate conditions like temperature cycling, drop, vibration and fatigue life tests
  5. Investigate and quantify different design scenarios ( varying geometries, changing materials etc)

By partnering with ASTCAD for FEA services, your company can enjoy fast, accurate and professional finite element analysis services at a low cost. With access to expert FEA structure stress analysis, engineering design and simulation using CAD, you can solve your engineering problems. From the initial concept to the final product launch , you can be sure of 100% customer satisfaction, when you partner with ASTCAD for FEA services.

Have you outsourced mechanical engineering services before? If yes, how did it go? Would you consider outsourcing FEA services? Let us know your thoughts, views and questions on outsourcing to ASTCAD by leaving a comment in the box below. We, at ASTCAD love, to hear from you!

Reverse Engineering Using 3D Scanners to Generate CAD Models

Reverse Engineering Using 3D Scanners to Generate CAD Models

The engineers of today lives and thrives in a 3D CAD model world. The CAD models offer the best design versatility and a direct link to rapid prototype development. The CAD models are essential where reverse engineering use 3D scan data to generate CAD models.

Here, the object exhibits a complex shape when using a 3D model that does not exist for a component. The 3D scan equipment captures the physical geometry that transforms it into a 3D digital model. The CAD engineers and industrial designers create a task to adapt and maintain parts that integrate into the design.

Reverse Engineering Features:

  • Designing a new part to fit a legacy part.
  • Obtain CAD data that captures an object's design intent.
  • It accurately offers performance surfaces.
  • It helps in updating CAD models of your tooling to match shop-floor changes.
  • Get ready to redesign a part without manufacturing defects.
  • It supports modernising your manufacturing process.
  • It offers animation or visualisation.
  • Perform a dimensional along with comparative analysis of an object.
  • Performing FEA or CFD analysis.

Reconstruct the damaged part digitally to reproduce it in its originally intended form. It uses rapid prototyping or CNC technologies. The 3D scanning technologies come in different shapes and forms. Additionally, some stationaries require the part to be brought into the scanner.

The scanning laser technology has conducted surveys of the 3D contour of the surface. It helps to save the geometrical data to a CAD model. The 3D scanners scan vehicles, aeroplanes, ships, submarines, historic monuments, buildings, sculptures, consumer products, and more.

Let's say a complex 3D scanning problem is the 3D scan that is performed by Creaform, mainly using HandyScan3D. It's a unit combined with a long-range scanner in the United States Marine Corps War Memorial replica. It is located at the Marine Corps Recruit Depot in South Carolina.

The project's primary purpose comes with historical preservation so that the memorial could recreate in the future if it suffers damage. The handheld scanner mostly used the application capable of scanning ½ million points per second. With up to 30 sq. resolution accuracy and 60 sq. volumetric accuracies.

HOW DO 3D SCANNERS WORK?

Laser scanning is a process where the scan passes a laser line over the surface of an object. Later the surface data was captured by a camera sensor mounted in the laser scanning. It records and saves three-dimensional information to a model.

The regions of an object are scanned once. It allows thousands of closely positioned points to be surveyed at once. Currently, several laser scanners exist, including the line, patch, and spherical. Also, Laser scanning is performed without making contact with the object.

Talking about digitising, it's a contact-based form of 3D scanning in which a point or ball probe is scanned over points on the object's surface. It is more accurate for industrial reverse engineering applications. The 3D laser scanning is more desirable for non-standard or organic shapes where the sculptures or person's face is scanned. Digitising limits to smaller objects, while 3D laser scanning is more versatile.

It is used to scan large objects like vehicles or buildings. White light scanning, CT scanning and photo image-based systems are mainly used as alternate methods for 3D scanning applications.

LIMITATIONS OF 3D SCANNING

Bright white light sources can be detrimental to 3D scanning technologies, requiring many outdoor laser scanning projects to be conducted after daylight hours.

3D scanning works better on matte finishes than highly reflective surfaces, which reflect white light. Spray-on solutions exist that can effectively dull a surface before scanning.

Some intricate objects, such as large sculptures, require stationary and handheld scanners to reconstruct the entire surface. This process requires a detailed and intricate image and position registration – fortunately, many companies exist that have mastered this process and provide solutions for these complex problems.

INSPECTION WITH USING 3D SCANNING TECHNOLOGIES

Inspection is another valuable use of 3D scanners. It allows parts to be rapidly checked and ensures manufacturing tolerances. 3D scanning technologies use First Article Inspection, where high accuracy comes with fine resolution. It requires verification with a physical part that produces according to production drawings.

The scanners inspect a "final" part so that its models and drawings can generate blueprints for re-manufacturing a part. The Inspection of aging components or systems is possibly used with technologies. For example, modifications are required to update the vehicle in foraging ships or aircraft. It uses reverse engineering that uses laser-based 3d scanning technologies that produce physical dimensions of the vehicle or its parts.

It comes with a prime example that comes with reverse engineering. It comes with an F-15 test plane used for NASA engineers. It was conducted by Direct Dimensions, Inc. (DDI) in 2006. Additionally, the engineers at NASA modify the test plane and obtain in-flight data to verify design improvements.

Due to its daunting costs, it associates along with full-scale testing. It comes with the danger associated with measuring pressure on a plane that moves at supersonic speeds. It is used to chase planes with the help of reverse engineering. Before testing and implementation, it could simulate the design changes and use computational fluid dynamics (CFD) software. DDI mainly uses the FARO LS 3D laser system, along with a portable scanner designed for scanning the shape of large objects.

It can acquire up to 120,000 points per second over ranges of up to 80 meters. The technology allows DDI and quick and accurately capturing the jet's exterior shape with an accuracy of +/-6 millimeters. The raw comes with 3D scanning data that offer a high-resolution point cloud. It uses a laser that reflects spots off the plane's surfaces. It can digitally process and convert to CAD format. Over 50 individual scans from different positions generated 50 million data points used in reverse-engineering of the F-15.

Australian Design and drafting Services Importance of CAD Platforms in Designing Products 4

Importance of CAD Platforms in product designs

In the present age of rapidly computerized applications and CAD product designs , it is very likely that many future electromechanical products will have an embedded processor within them. Consider these two examples:

  • Several decades ago, the automobile industry designed automobiles with carburetion technology. This was been replaced by computer-driven electronic ignition systems. Likewise, manual braking was replaced by computer-assisted “antilock braking.” Recently, the concept of a computer-operated driverless car was mentioned as becoming a real possibility. The idea is not too far-fetched when you consider that computer-managed aeroplane navigation is a mature technology.
  • Many products such as copying machines, refrigerators, HVAC systems, and robotic systems provide real-time electronic communication between the customer and the manufacturer. For example, downtime for copying machines is significantly reduced because the product is proactive in sensing impending failures and calling for service. This makes the customer believe that the product is very reliable and virtually failure-free.

These two examples illustrate the trend in product development which combines CAD hardware design, embedded computer technology, and IT (Information Technology) into a package which changes a “dumb product” into a “smart product”. A smart product, therefore, communicates with both its manufacturer and with its customer in a manner which improves the functionality of the product and provides optimum performance of the product.

 

Australian Design and drafting Services How to reduce design and drafting cost?

How to reduce design and drafting cost?

Do you know, how much it cost to design a home? Here, the answer is quite simple. All you require to do is to outsource ASTCAD Design & Drafting. It helps to avail of cutting-edge 2D design drafting solutions for Australia, without investing in expensive technology or going through tedious recruitment headaches. Below, we have listed the  importance of effective 2D drafting  and the varied types of 2D drafting services that offer numerous benefits that come with outsourcing to ASTCAD Design & Drafting.

If your firm drawing is designed for a home, office, restaurant, or other type of building, you should be aware of its critical role. The 2D drafting offers a successful outcome of a building.  2D drafting  is one step ahead that cannot afford to skip, even though you may encounter other problems while designing. Furthermore, 2D drafting provides time, skill and expertise. Using outsourcing, you need not to worry about 2D drafting anymore. You have to outsource 2D drafting to Australian Design & Drafting along with enjoying big  savings on cost, time and effort.

No matter what type of design plan you’re looking for, you can avail an effective 2D drafting plan. Outsource to ASTCAD Design & Drafting using best mechanical engineers and 2D drafters. Put your skills and knowledge with delivering a cutting-edge 2D draft for your building. Avail 2D drafting services for the following:

  • Architectural drawings
  • Preliminary drawings
  • Millwork drawings
  • Assembly drawings
  • Shop drawings
  • Structural design drawings
  • Engineering (MEP) drawings
  • Presentation drawings
  • Machine drawings
  • Manufacturing drawings
  • Fabrication drawings
  • Structural steel detailing
  • Construction or working drawings

Here’s Why ASTCAD Design & Drafting Is the Preferred Outsourcing For 2D Design Drafting:

  1. Choose the latest 2D drafting software and tools that offer ASTCAD Design & Drafting by employing the latest 2D drafting tools such as, AutoCAD®, MicroStation®, SolidWorks®, Staad Pro®, Ansys®, 3DS Max®, VRay, X-Steel, Revit®, ProE®, Autodesk® Inventor®, CATIA®, and Unigraphics/NX to create world-class 2D drafts.
  1. Skilled 2D drafters: Outsource 2D drafting to ASTCAD Design & Drafting. It gives an access to a dedicated engineers and drafters team by collaborating with your company. We understand your needs and provide satisfactory 2D drafting solution. Our excellent team uses a 2D drafting solution used as preliminary drawing. Therefore, it includes architectural drawing, structural drawing, that develop a firm base for your design plans.
  1. 2D drafting in CAD:  ASTCAD Design & Drafting provides an extensive knowledge of 2D drafting in CAD. It is based on exact scaling and specifications that one need to get.
  1. Huge cost savings: Simply cutting down on current cost by 50% while getting access to professionally drawn 2D drafts to meet your expectations.

Outsource to ASTCAD Design & Drafting, and work with the best people in the industry. It uses 2D drafting out of your hands and focus on your design plans. We offer dedicated team of skilled mechanical engineers that use ASTCAD Design & Drafting. It works out a 2D draft for your building ahead of your deadline.

Outsource 2D drafting to ASTCAD Design & Drafting with experiencing freedom from mundane recruitment, payroll or infrastructure-related hassles.

Which  2D drafting service  would you prefer if you're looking to outsource? Have you outsourced 2D drafting before? If yes, how did it went? If you have a question outsource or express your views. Leave your comment in the box below. We, at ASTCAD Design & Drafting, love to hear from you.

How CAD Modelling helps Water Distribution Systems?

By using 3D modelling over the past 20 years, we have improved our engineer's ability to design, model, and  fabricate complex parts for various industries. It covers automotive, aerospace, and biomedical. Let's say a tool that helps civil engineers, city planners, and construction crew to plan out networks for water distribution and wastewater management operations using a single mouse click. Such tools are readily available today and assist us in complex optimizations.

If we talk about network engineering, then they are a design of pressurized pipelines that is highly complex and require significant planning and understanding. It helps in regulations and design criteria. It is a highly time-consuming task that requires significant effort and prior knowledge with time.

Even with prior understanding, it offers cumbersome to meet the necessary design criteria. It includes a minimum pipeline slope, spacing between valves, and intersection with existing utilities. Along with adding other applicable quality standards to it.

DESIGN AND OPTIMISATION TOOLS FOR BETTER WATER INFRASTRUCTURE

Consider that your design comes with a water network along with a bottom-up approach. It uses the available water source and adds information on the constituent and tank-mixing in the design. Also, in such a scenario, the common questions might be:

  • How would the water system handle a fire?
  • What is the limitation of design in your water network?
  • Will there be enough water at each fire hydrant?
  • What happens if there comes excess flow from a particular location?
  • Will there be a sufficient flow of water that handles your system requirements?

The CAD programs use 3D modelling designed with complex water distribution systems. It provides the answer to the above questions. Bentley System's Water GEMS runs a stand-alone tool with MicroStation or AutoCAD tools. The Pipe Plan and Innovyze'sInfoWate tools offer a similar solution to it. The above tools are adopted by utility companies, municipalities, townships, and design engineers . They provide efficient design and optimization tools for water infrastructure and networks.

What are the advantages of using CAD to develop water distribution networks?

  • It comes with the ability to visualise the network in a 3D environment.
  • It offers the ability to model pipe pressures.
  • It helps in GPS tagging of the pipe network and existing pipes.
  • It allows designers to determine points of interference and avoid critical problem areas.
  • It has the ability to model-flow rate, loss nodes and pressures.
  • It is mainly used to design for high-flow conditions at a fire, which requires fire hydrants.

CAD REAL-TIME EXAMPLES AND ITS USE IN WATER DISTRIBUTION NETWORKS

The  CAD tools  are most likely to be used in civil engineering planning and design. Salt Lake City is used in Utah, and Huntington Beach in California are the two cities that have adopted WaterGEMS software for designing, optimising, and maintaining their water distribution networks. Salt Lake City's water distribution network helps to serve almost half a million residents, including over 1,000 miles of pipes.

It uses a complete geographical information system (GIS) for its water, sewer, and stormwater infrastructure. It is built into a model. It primarily uses WaterGEMS, a city currently building a hydraulic model for the water distribution system. It primarily uses existing data to update and maintain the city's expansion.

The tool mainly determines the optimal pipes that replace pipes. Some customers complained that the flow was insufficient during peak periods. They use guidance where the city can remediate the complaints. Further, they meet the fire department's flow requirement with 1500 gallons per minute for all fire hydrants along with high pressure.

Best Known CAD Tools for Optimisation and Piping Plans

WaterGEMS:

WaterGEMS is a tool used primarily to design, analyse, and optimise  water distribution systems . Several features are used, such as WaterGEMS, covering steady-state and extended-period simulations. Along with constituent-concentration Analysis, source tracing, tank-mixing, water-age, and fire-flow analyses.

Additionally, there are controls used to rule-based logic and pumps for single or variable speed. The tools help users find operational bottlenecks by minimising energy consumption and modelling real-time operations. The critical Analysis is another essential feature that allows users to find the weak links and valves in the water distribution system.

The tool provides the ability to import CAD, GIS, database data and perform the  polyline-to-pipe  conversion from DXF files. The program includes optimisation tools that facilitate and enhance design iterations. It is more impressive that the program can directly link to Supervisory, Control, and Data Acquisition (SCADA) systems. It was named as SCADAConnect. Here the software tool provides an environment to monitor and control the network in real-time. They use the tool along with the pipe network model monitored in real-time. It allows a comparison of the model with the operation. The problem deficiencies investigate and evaluated using forensic performance analysis.

PipePlan: 

A second tool comes with a similar utility called Innovyze's PipePlan software. It provides a geospatial environment for water network analysis. It was designed for a detailed hydraulic network model. The design engineers produce and validate distribution and transmission line designs iteratively with minimal effort.

PipePlan allows horizontal and vertical alignments that help to define the location of pipe fittings such as bends, air valves, washouts, end caps and tees. It comes with an essential feature of the tool and its interference checking. It comes with automating report intersection with existing/proposed utility networks.

CONCLUSIONS

The tool maintains water distribution networks and goes through the challenging task for governments across the globe. In this context, the CAD software plays a significant role in enabling the proper water flow regulation. Also, it covers cities and urban areas that would continue to expand. Therefore, the tools like WaterGems and PipePlan comes with an even more critical role in providing efficient design and optimized water networks in the future.

Australian Design and drafting Services CAD importance in Product Development

CAD importance in Product Development

CAD and CAM are industrial computer applications, which have greatly reduced the time and cost cycles between initial concepts and product development. They have enabled designers and manufacturers to make significant cost savings. These tools also reduce the time to market for new products, and reduce the number of design flaws, which tend to hamper productivity, and in some cases ground an entire production cycle. Since the 1980s, CAD and CAM have provided exponential gains to both the quantity and quality of products.[/fusion_text][fusion_text]The primary advantages of CAD include the ability to:

  • reduce design cycle times
  • design a complex machine without the need to prototype
  • prototype parts directly from a CAD model
  • reduce low-cost design iterations rapidly
  • alter the designs quickly by changing geometrical parameters
  • view designs or parts under a variety of representations
  • virtually simulate real-world applications

CAM is the use of CAD data to control automated machinery for producing parts designed using CAD. The benefits of linking part fabrication directly to the CAD model include:

  • Direct control of computer numerical control (CNC) or direct numerical control (DNC) systems to produce exact replicas of the designs
  • Ability to skip the engineering drawing phase
  • Reduced part variability

How Boeing Set the Standard for Design Automation?

Boeing is the world’s second-largest defence contractor and a leading manufacturer of aircraft, rockets, and satellites. CAD has played a major role in their product development planning and operations over the past three decades. Boeing announced the development of the 777 in the late 1980s, leading many aviation experts to question their decision. The design of an entirely new aircraft is a highly expensive task, whereas the success of the 747 models had been serving customers for over 30 years led experts to believe that the proper solution was to modify the 747 to suit passenger needs. Boeing applied a new approach that included customer inputs in the design phase from several major airlines, including United Airlines, Nippon Airways, British Airways, Japan Airlines and Cathay Pacific.

More importantly, Boeing invested over $1 billion in design automation using CAD based on CATIA (Computer Aided Three-dimensional Interactive Application) and ELFINI (Finite Element Analysis System) to design the new airliner that would turn out to become an industry standard. Both of these software packages were developed by Dassault Systemes of France. Boeing applied the following objectives to guide their break-through process:

  • Reduce aircraft development time significantly
  • Meet customer requirements better by involving them in the development process
  • Eliminate costly modification procedures

As a result, the 777 was the first aircraft in the world to be designed entirely using CAD technology. It was designed to maximize efficiency and quality. The completed design included over 3 million parts! The design process, its innovative features, and Boeing’s approach to manufacturing became the “Gold Standard” for development of future aircraft and were applied to a number of other projects, such as the International Space Station. The design was executed so successfully that a full-scale mock-up of the 777 was never built and was not necessary, reducing the design and production time. In fact, its first flight was so successful that the design was considered one of the most seamless and smoothest to date.

By using CAD models , design engineers were able to provide “built-in” options, which did not need to go to production, such as folding wing-tips. By developing options in CAD, the cost associated with such a trade study and its design is minimized.

What Benefits did Boeing Realize by Automating its Design Process?

To assess the value of the design automation that Boeing implemented in their process by using 3D CAD modelling to design the 777, Boeing compared the effort with their previous design efforts (757 and 767). Overall, they realized:

  • 91% reduction in development time
  • 71% reduction in labour costs
  • Over 3000 assembly interfaces were developed virtually without the need for prototypes
  • Reduction in design and production flaws, mismatches, and associated errors
  • 90% reduction in engineering change requests from approximately 6000 to 600
  • 50% reduction in cycle time for engineering change request
  • 90% reduction in material rework
  • 50 times improvement in assembly tolerances for the fuselage.

It is notable that the design was completed at a time when CAD was not linked directly with FEA and CFD modelling software, but the effort has still been widely accepted as one of the greatest uses of CAD of its time.

The value of CAD modelling is just as valuable on a smaller scale, such as in the bicycle industry. For example, Cannondale is another pioneer that has utilized CAD and CAM technology since the 1990s to reduce its production cycle and reduce manufacturing costs , resulting in significantly higher production rates. As part of their integrated system design approach, Cannondale extended its production capability to produce custom designs for customers that are fit to their individual needs, resulting in over 7000 custom-fit designs that can be produced using their vertical integration production strategy. Their highly advanced model allows the company to maintain a competitive advantage in all aspects of design, performance, and production.

What Lessons can be Learnt from these Pioneers?

  • Leverage customer input early in the design process
  • Use CAD, CAM, and rapid prototyping of models to obtain valuable feedback from all stakeholders, including end customers, manufacturers, and suppliers
  • Reduce design times by applying CAD early in the design process no matter how small, simple, or complex your design.

 

28加拿大软件168开奖 dota2公告新版v0.3 全球电竞直播赛事网站 玩嘉电竞下载注册 lpl职业联赛 蜂巢电子竞技公告积分